110
Views
4
CrossRef citations to date
0
Altmetric
Articles

A study of the environmentally friendly polycarbonate surface etching system containing H2SO4–MnO2 colloid

, &
Pages 1455-1463 | Received 05 Nov 2011, Accepted 23 Oct 2012, Published online: 22 Nov 2012
 

Abstract

In this paper, an environmentally friendly etching system containing H2SO4–MnO2 colloid was used to investigate surface etching for polycarbonate (PC). The effects of swelling condition, H2SO4 concentrations and etching times on surface topography and surface roughness were studied. With the etching treatment, the surface average roughness (R a) of PC substrates increased from 3 to 76 nm and the adhesion strength between the electroless copper and PC substrate reached 1.08 KN/m. Surface chemistry of PC substrates was investigated by the contact angle measurement and X-ray photoelectron spectroscopy spectra (XPS). After the etching treatment, PC surface became hydrophilic and the contact angle decreased from 95.2 to 39.6o. XPS analyses indicate that hydroxyl and carboxyl groups are formed on the PC surface as a result of the etching treatment, which improve the adhesion strength between PC substrate and electroless copper film.

Acknowledgements

The authors would like to thank Research Fund for the National Natural Science Foundation of China (No. 21273144), Doctoral Program of Higher Education of China (No. 20110202110004) and Changjiang Scholars and Innovative Research Team in University of China (IRT1070) for supporting this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.