176
Views
4
CrossRef citations to date
0
Altmetric
Articles

Plasma-induced adhesion improvement of cotton/polypropylene-laminated fabrics

, &
Pages 2326-2339 | Received 19 Dec 2012, Accepted 05 Feb 2013, Published online: 01 Mar 2013
 

Abstract

In this study, improvement in the adhesion strength of plasma-pretreated and laminated cotton/polypropylene (PP) fabrics using acrylic-based adhesive was investigated. Low-temperature, low-pressure oxygen plasma was utilized for surface modification of cotton/PP-laminated fabrics. Water absorption time was measured on plasma-treated cotton fabrics at different plasma power and treatment time conditions. The plasma conditions providing the fastest liquid absorption on the surface were selected and applied during plasma pretreatments. Surface wettability increased with increasing plasma power and plasma exposure time. Plasma-induced surface morphology changes were observed via Scanning Electron Microscope (SEM) images. X-ray Photoelectron Spectroscopy (XPS) analysis showed that oxygen content on the surface increased with plasma treatment, which contributed to the surface polarity and hydrophilicity. Peel bond strength results of untreated and plasma-treated samples were analyzed to determine the effect of plasma pretreatment process. Adhesion strength values of laminated samples, before washing and after 40 wash cycles, were determined by peel bond strength tests. Before washing, adhesion strength of plasma pre-treated, laminated samples was 28–60% higher than that of untreated laminated fabrics. After 40 wash cycles, adhesion strength of plasma pre-treated and laminated samples was about 40–69% higher than the untreated laminated fabrics. Peel bond strength values decreased with the increased number of wash cycles. Plasma pretreatment enhanced both the adhesion strength and washing resistance of laminated samples.

Acknowledgment

This study is financially supported by the Istanbul Technical University Scientific Research Projects Grant No. BAP-34,315 and BAP-34,490. The authors are grateful to Prof. Dr. F. Seniha Güner from Department of Chemical Engineering, Istanbul Technical University, for allowing access to the laboratory equipment and continued support.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.