387
Views
22
CrossRef citations to date
0
Altmetric
Articles

Interfacial microstructure and properties of carbon fiber-reinforced unsaturated polyester composites modified with carbon nanotubes

, , , , , & show all
Pages 444-453 | Received 30 Jul 2013, Accepted 22 Aug 2013, Published online: 18 Sep 2013
 

Abstract

To improve the interfacial properties in carbon fiber (CF)-reinforced unsaturated polyester (UP) composites, we directly introduced functionalized carbon nanotubes dispersed in the fiber sizing onto the fiber surface. For comparing the influence of polymer type on sizing effect, two different polymers (UP MR13006 and water-soluble epoxy (EP)) were used to prepare sizing agent. Morphology and surface energy of CFs were examined by scanning electron microscopy and dynamic contact angle analysis test. Tensile strength was investigated in accordance with ASTM standards. Mechanical properties of the composites were investigated by interlaminar shear strength (ILSS) and impact toughness. Test results indicate that TS, ILSS, and impact toughness were enhanced simultaneously. For UP matrix, the sizing agent containing UP has better reinforcing and toughening effect than the sizing agent containing water-soluble EP.

Acknowledgments

The authors gratefully acknowledge financial supports from the General Motors China Academic Partnerships Program (RD-10-334) and the National Natural Science Foundation of China (Nos. #51003021 and 51073047).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.