70
Views
0
CrossRef citations to date
0
Altmetric
Articles

Influence of the interface width on the adhesion strength of copper films deposited on negatively biased carbon steel substrates

Pages 145-156 | Received 16 Jan 2015, Accepted 06 Sep 2015, Published online: 08 Oct 2015
 

Abstract

In order to improve the adhesion of copper films deposited by DC magnetron sputtering on carbon steel substrates, a negative bias voltage was applied to the substrate during the film deposition process. The scratch test was used to evaluate the adhesion strength of the films on the substrates. Chemical element identification and interface width measurement were carried out by Auger electron spectroscopy. The experimental results show that a variation of the bias voltage causes a change in the behaviour of the interface width similar to that of the critical load. The size of the interface width is obtained from Auger elemental depth profiles by measuring the depth of the interface between the coating and the substrate. It had a value of 45 min for an unbiased substrate and increased to 310 min at a bias of 450 V. In the latter case, the interface is relatively wide and the effects of diffusion and physical mixing of materials at the interface become preponderant. Then, the interface width decreased to 130 min at 600 V in which case it gets narrower and the phenomenon of film densification becomes prominent. In all cases, the substrate temperature generated by the bias voltage also has an effect. Moreover, it was observed in this study that the critical load increases with the size of the interface width. As a result, the application of a bias voltage contributes positively to the enlargement of the interface and consequently enhances the adhesion strength.

Acknowledgements

The author is grateful to Dr. D. Roptin and Mr. J. P. Roche, Ecole Centrale de Nantes, University of Nantes, France, for the Auger electron spectroscopy analyses. The author would like to thank Prof. A. Hennache, Department of Physics, Al-Imam Muhammad Ibn Saud University, Riyadh, Kingdom of Saudi Arabia, for critical reading of the manuscript.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.