208
Views
5
CrossRef citations to date
0
Altmetric
Articles

Adhesive bond strength and compressive strength of a novel bulk fill composite with zirconia nano-hybrid filler

&
Pages 450-463 | Received 25 Apr 2016, Accepted 25 Jul 2016, Published online: 08 Aug 2016
 

Abstract

The aim of the study was to investigate the adhesive bond and compressive strength of novel bulk fill resin composite with zirconia (Zr) nano-hybrid filler. Sixty molars were mounted in acrylic resin with flat occlusal surface. Half of the specimen (n = 30) were bonded using total etch (TE) and the other half with self-etch (SE) technique. Specimens treated with SE (n = 30) and TE (n = 30) bonding protocol were divided into three groups, based on the type of bulk fill build-up materials (ZC–ZirconCore, MC–MulticCore Flow and LC–Luxacore Dual), resulting in six study groups [MC-TE, MC-SE, LC-TE, LC-SE, ZC-TE, ZC-SE]. Cylindrical (3 × 3 mm) build-ups were performed followed by shear bond strength testing (crosshead speed-1 mm/min). Ten specimens for each bulk fill build-up material (MC, LC and ZC) were prepared for compressive strength testing. All specimens were tested for maximum failure loads (crosshead speed−0.5 cm/min). Analysis of variance and paired t-test were performed to statistically analyze the data. TE technique showed significantly higher bond strength values as compared to SE technique (p < 0.001) for all three materials (MC, LC and ZC). Shear bond strength for MC [TE,17.88(2.00)-SE,9.43(0.98)] and LC [TE,18.91(2.57)-SE,6.35(1.12)] groups were significantly higher than ZC group [TE,13.99(1.09)-SE,4.61(0.84)]. Specimens in ZC group (266.73 ± 9.76) showed significantly higher compressive strength in comparison to MC (247.66 ± 9.72) (p = 0.004) and LC (249.87 ± 13.17) (p < 0.001) groups. Zirconia nano-hybrid filler resin bulk fill material has comparatively high compressive strength and low bond strength making them suitable for clinical applications in the posterior region with favorable conditions for adhesive bonding.

Acknowledgements

The authors would like to extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.