300
Views
2
CrossRef citations to date
0
Altmetric
Articles

Interface improvement of carbon fiber/methylphenylsilicone resin composites by fiber surface coating of polyhedral oligomeric silsesquioxanes

, , &
Pages 897-909 | Received 20 Jun 2016, Accepted 05 Sep 2016, Published online: 19 Sep 2016
 

Abstract

To enhance interfacial properties of carbon fibers (CFs)-reinforced methylphenylsilicone resin (MPSR) composites, we introduced an appropriate interface reinforced by trisilanolphenyl-polyhedral oligomeric silsesquioxanes (trisilanolphenyl-POSS) between CFs and MPSR with a liquid phase deposition strategy. Chemical bonds among silanol groups of trisilanolphenyl-POSS, hydroxyl-functionalized CF (CF–OH), and silanol end groups of MPSR in the coating were expected to be formed through condensation reaction during the prepared process. CFs with and without sizing treatment-reinforced MPSR composites were prepared by a compression molding method. X-ray photoelectron spectroscopy revealed that trisilanolphenyl-POSS particles enhanced the contents of fiber surface oxygen-containing groups and silicon-containing functional groups. Scanning electron microscopy and atomic force microscopy images showed that trisilanolphenyl-POSS nanoparticles have been introduced onto the fiber surface obviously and the surface roughness increased sharply. Dynamic contact angle analysis indicated that trisilanolphenyl-POSS-modified sizing agent could improve the fiber wettability and surface energy significantly. Short-beam bending test and impact toughness test results showed that the interlaminar shear strength and impact resistance of the sized CFs composites were enhanced greatly with increasing amplitudes of more than 35 and 27% in comparison with those of untreated CF composites, respectively. Cryo-fractured surface topographies of composites confirmed that interfacial adhesion between CFs and MPSR has been improved after sizing treatment. Meanwhile, the sizing treatment does not decrease single fiber tensile strength.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.