525
Views
20
CrossRef citations to date
0
Altmetric
Articles

Design factors for reducing ice adhesion

ORCID Icon, &
Pages 2271-2284 | Received 01 Nov 2016, Accepted 16 Feb 2017, Published online: 16 Mar 2017
 

Abstract

The purpose of this study was to investigate the relationships between a type of engineering material and the ice adhesion strength while in direct application in icing conditions. Ice adhesion tests were conducted on various materials with different surface conditions. There is an identified need for systematic studies on the effects of varying surface conditions with well-characterized roughness and accurate adhesion measurement. This information is key in understanding the adhering behaviour of ice which is a necessary prerequisite for modelling the behaviour of ice adhesion to other surfaces and for icing prevention. Results show that the type of material will determine, in large, the strength of the ice adhesion between surfaces with similar roughness characteristics and the receding contact angle of water can be used as a predictor of relative ice adhesion. The adhesive strength of ice can be increased or decreased dramatically by means of adjusting the surface roughness with a uniform process. Each material tested exhibits a similar linear relationship. There was a stark contrast in the ice adhesion between the varying materials despite very similar polished surface conditions and static water contact angles. Ice bonded to the glass surface with an adhesion of 1562 ± 113 kPa, and to aluminum at 1039 ± 117 kPa, and stainless steel at 1022 ± 115 kPa, and finally Teflon at only 33 ± 52 kPa and during 80% of trials the ice/substrate interface was broken with no measured adhesion. The information gathered can be used to improve designs for a number of devices needed in cold weather climates.

Acknowledgements

The authors would also like to thank Mrs. Simina Fillion for editing the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.