508
Views
23
CrossRef citations to date
0
Altmetric
Articles

Scratch adhesion and wear failure characteristics of PVD multilayer CrTi/CrTiN thin film ceramic coating deposited on AA7075-T6 aerospace alloy

ORCID Icon, , ORCID Icon, &
Pages 625-641 | Received 11 Jun 2017, Accepted 28 Aug 2017, Published online: 07 Sep 2017
 

Abstract

This study highlights the scratch adhesion failure characterization and tribo-mechanical properties of physical vapor deposited (Cr, Ti) N coating on AA7075-T6 by using magnetron-sputtering technique. The surface morphology, microstructure and chemical composition of CrTi/CrTiN film were inspected by an optical microscope, scanning electron microscope (SEM) incorporated with energy dispersive X-ray spectroscopy (EDX) in addition to focused ion beam milling. The coating to substrate critical load of about 1261 mN was obtained, by employing coating deposition parameters of; DC power (300 W, RF power (200 W)), temperature (300 °C) and nitrogen flow rate (6%). Failure adhesion characteristics exhibited initial arc-tensile cracking followed by chipping and spallation that led to complete coating failure at Lc3. The tribo-mechanical aspects were evaluated by a pin-on-plate reciprocating testing unit, which showed a lower friction coefficient of 0.36 for CrTiN as compared with 0.43 for AA7075-T6. Subsequently, the wear depth was also reduced from 9.5 to 5.9 μm. It was revealed that the wear mechanism for AA7075-T6 was extensive deformation, abrasion and delamination, while the CrTiN exhibited slightly oxidative abrasive wear mode.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.