188
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

A combined computational and experimental study on the mild steel corrosion inhibition in hydrochloric acid by new multifunctional phosphonic acid containing 1,2,3-triazoles

ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1741-1773 | Received 21 Oct 2019, Accepted 31 Jan 2020, Published online: 24 Feb 2020
 

Abstract

Two triazole derivatives with phosphonic acid as pendent group, namely [3-(4-phenyl-[1–3]triazol-1-yl)-propyl]-phosphonicaciddiethylester (PTP) and [3-[4-(4-dimethylamino-phenyl)-[1–3]triazol-1-yl]-propyl]-phosphonic acid diethylester (DMPTP) were synthesized and fully characterized using NMR spectroscopy, Mass spectrometry, Infra-Red (FT-IR) spectroscopy and elemental analysis. The synthesized multifunctional heterocycles were investigated to inhibit the corrosion of mild steel in acidic solution HCl (1 M) by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and weight loss measurements. The results of the different corrosion measurement techniques are in good agreement. The potentiodynamic polarization analysis shows that the PTP and DMPTP derivatives are mixed-type inhibitors. In addition, EIS measurements were used to simulate the corrosion inhibition process by using a suitable equivalent circuit. The thermodynamic and kinetic parameters obtained demonstrated that both inhibitors adsorb to the surface of mild steel according to the Langmuir model’s isotherm. A layer adsorbed onto the surface of the mild steel has been confirmed by FT-IR, scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. Moreover, Density Functional Theory (DFT) analysis and Molecular Dynamics simulations (MD) have been carried out, the computational results agreeing with the experimental ones.

Acknowledgements

Université Cadi Ayyad (UCA) and the Spanish Ministerio de Ciencia e Innovación (MCINN) (Projects CTQ2016-75068P) are gratefully acknowledged for their generous support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 432.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.