84
Views
13
CrossRef citations to date
0
Altmetric
Original

α-PHENYL-N-tert-BUTYLNITRONE ATTENUATES HYPEROXIA-INDUCED LUNG INJURY BY DOWN-MODULATING INFLAMMATION IN NEONATAL RATS

, , , , , & show all
Pages 234-249 | Received 13 Aug 2008, Accepted 22 Oct 2008, Published online: 02 Jul 2009
 

Abstract

This study was done to determine whether α -phenyl-N-tert-butylnitrone (PBN), a spin-trapping agent possessing significant anti-inflammatory capabilities, could attenuate hyperoxia-induced lung injury, and if so, whether this protective effect is mediated by the down-modulation of inflammation in neonatal rats. Newborn Sprague-Dawley rat pups were subjected to 14 days of hyperoxia (> 90% oxygen) within 10 hours after birth. PBN treatment, given 100 mg/kg intraperitoneally daily throughout the experiment, significantly attenuated hyperoxia-induced lung pathology, such as decreased radial alveolar count, increased mean linear intercept, and terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick end labeling–positive cells. Hyperoxia-indcued activation of nicotinamide adenine dinucleotide phosphate oxidase that is responsible for superoxide anion production, as evidenced by up-regulation and membrane translocation of p67phox, and the inflammatory responses, such as increased mRNA expression of tumor necrosis factor-α, interleukin-6, and transforming growth factor-β, were also significantly attenuated with PBN treatment. In summary, a spin-trapping agent PBN significantly attenuated hyperoxia-induced lung injury by down-regulating the inflammatory responses in neonatal rats.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.