42
Views
2
CrossRef citations to date
0
Altmetric
Original

INFREQUENTLY METHYLATED EVENT AT SITES −181 TO −9 WITHIN THE 5′ CpG ISLAND OF E-CADHERIN IN NON-SMALL CELL LUNG CANCER

, , , , , , & show all
Pages 541-553 | Received 17 Nov 2008, Accepted 22 Jan 2009, Published online: 15 Sep 2009
 

Abstract

Epigenetic silencing of E-cadherin via aberrant methylation has been investigated in various human tumors, whereas evidence for elucidating mechanism underlying reduction of E-cadherin mRNA remains unclear in non-small cell lung cancer (NSCLC). The authors previously found that reduction of E-cadherin mRNA or protein expression has been frequently observed in NSCLC. In this study, the authors explore the contribution of E-cadherin methylation to the development and progression of NSCLC. The authors directly performed the bisulfite DNA sequencing to examine CpG methylation within the 5′ CpG island of E-cadherin in 35 tumor and paired normal tissue specimens from patients with primary NSCLC. Then, the authors measured the level of E-cadherin mRNA by real-time quantitative polymerase chain reaction (PCR) analysis. Despite of reduction in E-cadherin mRNA by 65.7% (23/35) and presence of methylation by 28.6% (10/35) in tumors, the authors found no association of reduction of E-cadherin mRNA level with methylation of 19 sites from −181 to −9 bp located upstream from the translation start of E-cadherin in NSCLC. In conclusion, the authors provide no evidence for the presence of aberrant methylation sites of E-cadherin in tumors from patients with NSCLC, which can explain decrease of E-cadherin mRNA. Decrease in E-cadherin mRNA may be regulated by methylation-independent pathways in NSCLC.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.