109
Views
19
CrossRef citations to date
0
Altmetric
Original

ELEVATED ENDOGENOUS SURFACTANT REDUCES INFLAMMATION IN AN ACUTE LUNG INJURY MODEL

, , , , &
Pages 591-604 | Received 08 Sep 2008, Accepted 27 Jan 2009, Published online: 15 Sep 2009
 

Abstract

Acute lung injury (ALI) is associated with severe pulmonary inflammation and alterations to surfactant, and often results in overwhelming systemic inflammation, leading to multiple organ failure. The objective of this study was to determine the effect of increased endogenous surfactant pools on pulmonary and systemic inflammation in a model of lipopolysaccharide (LPS)-induced ALI. Mice received an instillation of liposome-encapsulated (i) dichloromethylene diphosphonic acid (DMDP) to increase surfactant pools via depletion of alveolar macrophages, or (ii) phosphate-buffered saline (PBS). Seven days after instillation, mice received an intranasal administration of LPS or saline. Following a 4-hour recovery period, mice were sacrificed and their lungs were isolated, mechanically ventilated, and perfused with 8 mL of recirculated perfusate through the pulmonary circulation for 2 hours. Perfusate and lavage fluid were collected for analysis of inflammatory mediators. Lavage analysis revealed a 5-fold increase in surfactant pools in DMDP-treated mice compared to PBS-treated controls. Lavage and perfusate analyses showed significant decreases in the concentrations of interleukin (IL)-6, tumor necrosis factor (TNF)-α, macrophage inflammatory protein (MIP)-1α, and IL-1β cytokines in DMDP-LPS mice compared to PBS-LPS controls. Elevated endogenous surfactant pools are protective against both LPS- and mechanical ventilation–induced inflammation, in addition to inflammation associated with the combination of these two insults.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.