224
Views
19
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Mediation of the single-walled carbon nanotubes induced pulmonary fibrogenic response by osteopontin and TGF-β1

, , , , , , , & show all
Pages 311-326 | Received 11 Apr 2017, Accepted 06 Sep 2017, Published online: 15 Nov 2017
 

ABSTRACT

Purpose of the study: A number of in vivo studies have shown that pulmonary exposure to carbon nanotubes (CNTs) may lead to an acute local inflammatory response, pulmonary fibrosis, and granulomatous lesions. Among the factors that play direct roles in initiation and progression of fibrotic processes are epithelial-mesenchymal transition and myofibroblasts recruitment/differentiation, both mediated by transforming growth factor-β1 (TGF-β1). Yet, other contributors to TGF-β1 associated signaling, such as osteopontin (OPN) has not been fully investigated. Materials and Methods: OPN-knockout female mice (OPN-KO) along with their wild-type (WT) counterparts were exposed to single-walled carbon nanotubes (SWCNT) (40 µg/mouse) via pharyngeal aspiration and fibrotic response was assessed 1, 7, and 28 days post-exposure. Simultaneously, RAW 264.7 and MLE-15 cells were treated with SWCNT (24 hours, 6 µg/cm2 to 48 µg/cm2) or bleomycin (0.1 µg/ml) in the presence of OPN-blocking antibody or isotype control, and TGF-β1 was measured in supernatants. Results and Conclusions: Diminished lactate dehydrogenase activity at all time points, along with less pronounced neutrophil influx 24 h post-exposure, were measured in broncho-alveolar lavage (BAL) of OPN-KO mice compared to WT. Pro-inflammatory cytokine release (IL-6, TNF-α, MCP-1) was reduced. A significant two-fold increase of TGF-β1 was found in BAL of WT mice at 7 days, while TGF-β1 levels in OPN-KO animals remained unaltered. Histological examination revealed marked decrease in granuloma formation and less collagen deposition in the lungs of OPN-KO mice compared to WT. RAW 264.7 but not MLE-15 cells exposed to SWCNT and bleomycin had significantly less TGF-β1 released in the presence of OPN-blocking antibody. We believe that OPN is important in initiating the cellular mechanisms that produce an overall pathological response to SWCNT and it may act upstream of TGF-β1. Further investigation to understand the mechanistic details of such interactions is critical to predict outcomes of pulmonary exposure to CNT.

Declaration of interests

Authors declare no conflict of interests.

Disclaimer

The findings and conclusions in this report are those of the authors and do not necessary represent the view of the National Institute for Occupational Safety and Health policy.

All experimental procedures were approved by the National Institute for Occupational Safety and Health Institutional Animal Care and Use Committee.

Funding

This project is funded by National Institute for Occupational Safety and Health ID: NORA 939051G.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.