219
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Thymic stromal lymphopoietin induced early stage of epithelial-mesenchymal transition in human bronchial epithelial cells through upregulation of transforming growth factor beta 1

, , , , , , , & show all
Pages 221-235 | Received 01 Mar 2019, Accepted 18 Jul 2019, Published online: 05 Aug 2019
 

Abstract

Purpose: Epithelial-mesenchymal transition (EMT) involved in asthmatic airway remodeling. Thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine, was a key component in airway immunological response in asthma. But the role of TSLP in the EMT process was unknown. We aimed to access whether TSLP could induce EMT in airway epithelia and its potential mechanism. Materials and Methods: Human bronchial epithelial (HBE) cells were incubated with TSLP or transforming growth factor beta 1 (TGF-β1) or both. SB431542 was used to block TGF-β1 signal while TSLP siRNA was used to performed TSLP knockdown. Changes in E-cadherin, vimentin, collagen I and fibronectin level were measured by real-time PCR, western blot and immunofluorescence staining. Expressions of TGF-β after TSLP administration were measured by real-time PCR, western blot and ELISA. Results: TSLP induced changes of EMT relevant markers alone and promoted TGF-β1-induced EMT in HBEs. Intracellular and extracellular expression of TGF-β1 were upregulated by TSLP. SB431542 blocked changes of EMT relevant markers induced by TSLP. Knockdown of TSLP not only reduced TSLP and TGF-β1 expression but also inhibited changes of EMT relevant markers induced by TGF-β1 in HBEs. Conclusions: TSLP could induce early stage of EMT in airway epithelial cells through upregulation of TGF-β1. This effect may act as a targeting point for suppression of asthma.

Acknowledgment

The authors would like to thank Zi-Jie Long for her technical assistance in this research.

Declaration of interest

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study was supported by National Natural Science Foundation of China (grant number: 81470219); Science and Technology Projects Foundation of Guangdong Province (grant number: 2014A020212120).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.