79
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Mineral nutrition during establishment of golden delicious ‘smoothee’ apples on dwarfing rootstocks and interstems

, , &
Pages 1179-1192 | Published online: 21 Nov 2008
 

Abstract

This study was conducted to determine the influence of 4 interstems (EM.27 EMLA, Mark, M.9 EMLA, and EM.26 EMLA) and 8 rootstocks (EM.27 EMLA, Mark, M.9 EMLA, EM.26 EMLA, M.7A, MM. 106 EMLA, MM. 111 EMLA, and seedling) with and without interstems on foliar element concentrations [nitrogen (N,) phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), iron (Fe), zinc (Zn), boron (B)] of the Golden Delicious ‘Smoothee’ (Malus domestica, Borkh). The trees were planted in 1990 and the experiment was conducted until 1996. Soil pH was low (pH=5.9) before planting but liming raised the pH to 6.5 by the 4th year after planting. Soil P was adequate, K and Mg were high, and Ca was low based on local recommendations for apples. The year by year variation in foliar element concentrations was much higher than rootstock and interstem effects. Differences among interstems and rootstocks were important as foliar element concentrations approached those of deficiency or toxicity. In this study, K decreased to deficiency concentrations by the end of the experiment except for seedling rootstocks, which slightly increased. Foliar Ca was deficient for all interstems and rootstocks at the start of the experiment, but increased extensively for M.9 EMLA and EM.26 EMLA rootstocks across years. Foliar Mn increased to nearly toxic concentrations (300 μg g‐1) in EM.27 EMLA and Mark rootstocks, whereas the other rootstocks did not. No deficiency or toxicity symptoms were noted for any elements during this study. These results indicate that a single range of foliar nutrient concentrations can be used as an aid for determining fertilization rates for the apple rootstocks and interstems used in this study. However, individual rootstocks vary in the rate at which they approach toxicity and deficiency concentrations, which needs to be known to prevent mineral nutritional related problems in commercial apple orchards.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.