247
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Modification of Secondary Metabolism and Flavonoid Biosynthesis Under Phosphate Deficiency in Bean Roots

, , &
Pages 245-258 | Received 01 Jun 2004, Accepted 23 May 2005, Published online: 14 Feb 2007
 

ABSTRACT

The objective of this study was to evaluate the influence of phosphate deficiency on enzymatic activities and on compounds of the secondary metabolism linked with the production of root exudates in bean (Phaseolus vulgaris L.) plants cv. ‘Bianco di Bagnasco.’ Phosphate deficiency induced a decrease in root total soluble phenolic content, but also caused an increase in total soluble phenolic content of exudates. Alteration of phenolic production was paralleled by increased activity of L-phenylalanine ammonia-lyase (PAL) and decreased activity of chalcone isomerase (CHI) in roots. Two isoflavonoids daidzein and naringenin, have been detected in roots; they are considered signal molecules in the chemical trafficking with soil microorganisms. Naringenin content was reduced by phosphorus (P) deficiency, due to lower activity of CHI, the enzyme responsible for its biosynthesis. On the other hand, daidzein content was higher in –P plants than in the control. The results are discussed, considering the possible roles of phenolics and flavonoids in plant-soil microbe interactions and rizosphere modification.

Notes

*= statistically different for P < 0.05.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.