433
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Mid-Season Prediction of Wheat-Grain Yield Potential Using Plant, Soil, and Sensor Measurements

, , , , , , , , , , , , , , , & show all
Pages 873-897 | Received 20 Dec 2004, Accepted 07 Sep 2005, Published online: 14 Feb 2007
 

ABSTRACT

The components that define cereal-grain yield potential have not been well defined. The objective of this study was to collect many differing biological measurements from a long-term winter wheat (Triticum aestivum L.) study in an attempt to better define yield potential. Four treatments were sampled that annually received 0, 45, 90, and 135 kg N ha−1 at fixed rates of phosphorus (P) (30 kg ha−1) and potassium (K) (37 kg ha−1). Mid-season measurements of leaf color, chlorophyll, normalized difference vegetative index (NDVI), plant height, canopy temperature, tiller density, plant density, soil moisture, soil NH4-N, NO3-N, organic carbon (C), total nitrogen (N), pH, and N mineralization potential were collected. In addition, soil texture and bulk density were determined to characterize each plot. Correlations and multiple linear-regression analyses were used to determine those variables that can predict final winter wheat grain yield. Both the correlation and regression analyses suggested mid-season NDVI, chlorophyll content, plant height, and total N uptake to be good predictors of final winter wheat grain yield.

ACKNOWLEDGMENTS

Contribution from the Oklahoma Agricultural Experiment Station.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.