1,115
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Zinc × Boron Interaction on Plant Growth and Tissue Nutrient Concentration of Corn

, , , &
Pages 773-781 | Received 16 Feb 2004, Accepted 13 Mar 2006, Published online: 21 May 2007
 

ABSTRACT

A pot experiment was conducted in a greenhouse on a calcareous soil (fine, mixed, mesic, Fluventic Haploxerepts) to study the interaction of zinc (Zn) and boron (B) on the growth and nutrient concentration of corn (Zea mays L.). Treatments consisted of a factorial arrangement of seven levels of B (0, 2.5, 5, 10, 20, 40, and 80 mg kg− 1as boric acid), two sources of Zn [zinc sulfate (ZnSO4 · 7H2O) and zinc oxide (ZnO)], and three levels of Zn (0, 5, and 10 mg kg− 1) in a completely randomized design with three replications. Plants were grown for 70 d in 1.6 L plastic containers. Applied Zn significantly increased plant height and dry matter yield (DMY) of corn. Source of Zn did not significantly affect growth or nutrient concentration. High levels of B decreased plant height and DMY. There was a significant B × Zn interaction on plant growth and tissue nutrient concentration which were rate dependent. In general, the effect of B × Zn interaction was antagonistic on nutrient concentration and synergistic on growth. It is recommended that the plants be supplied with adequate Zn when corn is grown in high B soils, especially when availability of Zn is low.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.