168
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Potassium Substitution by Rubidium and Sodium on Growth, Ion Accumulation, and Ion Partitioning in Bean under High Alkalinity

&
Pages 867-883 | Received 14 Mar 2007, Accepted 31 Dec 2007, Published online: 06 May 2008
 

ABSTRACT

The effects of partial and complete substitution of potassium (K+) by rubidium (Rb+) and sodium (Na+) on plant growth and ion accumulation and partitioning was studied in bean young plants cultivated in nutrient solution with or without bicarbonate (HCO3 )-induced alkalinity. Plant growth was significantly decreased due to alkalinity and the substitution of K+, being leaves more affected than roots. Rubidium caused a severe toxicity reflected in a reduction in root dry mass and total chlorophyll concentration. Ion partitioning was markedly altered by alkalinity. Content of nitrogen (N), calcium (Ca), magnesium (Mg), iron (Fe), K, and Na were more accumulated in the roots in HCO3 -treated plants, while decreased in the shoot. Iron (Fe) was accumulated at similar extent in plants with and without high alkalinity, except in plants grown in Rb+ solutions. However, Fe was more accumulated in the roots, suggesting that chlorophyll synthesis was impaired by reduced translocation or internal inactivation of Fe. Zinc total uptake was severely reduced under high alkalinity in plants grown in Na+ solutions, maybe due to decreased Zn activity. Calcium was translocated more actively to the leaves and Mg was accumulated more in the roots of plants in Na+solutions. Despite the severe decrease in plant dry mass caused by Rb+, there was a higher translocation of N, phosphorus (P), Ca, Mg, Fe, zinc (Zn), copper (Cu), and manganese (Mn) from the roots to the leaves.

Notes

z

∗,

∗∗,

∗∗∗, NS significant at P < 0.05, 0.01, 0.001, and non significant, respectively.

z

∗,

∗∗,

∗∗∗, NS significant at P < 0.05, 0.01, 0.001, and non significant, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.