877
Views
69
CrossRef citations to date
0
Altmetric
Original Articles

Arbuscular Mycorrhizal Mediated Nutrition in Plants

Pages 1595-1618 | Received 26 Jan 2008, Accepted 05 Jan 2009, Published online: 09 Sep 2009
 

ABSTRACT

Arbuscular mycorrhizae (AM) are the symbiotic fungi that predominate in the roots and soils of agricultural crop plants. The most recognized beneficial effect of these fungi is to enhance host plant uptake of relatively immobile nutrients, in particular phosphorus (P), and several micronutrients. The AM fungi absorb inorganic P either from the soluble P pools in the soil, or from insoluble forms such as rock phosphates as well as from insoluble organic sources. Recent studies show that mycorrhizal fungi would have access to rock phosphate through localized alterations of pH and/or by the production of organic acid anions that may act as chelating agents. The AM colonization also improves plant N nutrition. Generally mycorrhizal symbiosis more influences on nitrogen (N) uptake and translocation if ammonium (NH4 +) rather than nitrate (NO3 ) is the nitrogen source. However, under drought stress the role of mycorrhizae in NO3 transport to the root surface may be significant as the NO3 mobility is severely restricted due to its low concentration and diffusion rate under such circumstances. However, as yet little is known about the mechanism of N uptake by the AM fungi. Uptake of micronutrients is also influenced by mycorrhizal colonization.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.