653
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Effects of Calcium Chloride on Growth, Membrane Permeability and Root Hydraulic Conductivity in Two Atriplex Species Grown at High (Sodium Chloride) Salinity

&
Pages 1818-1830 | Received 23 Dec 2007, Accepted 07 Jun 2009, Published online: 02 Oct 2009
 

ABSTRACT

Calcium (Ca) has an important role in plant physiology, including involvement in the responses to salt stress, and controls numerous processes. To overcome the negative impact of high salinity, the addition of supplemental Ca to the growth medium as an ameliorative agent could be necessary. Atriplex halimus subsp. schweinfurthii and Atriplex canescens subsp. linearis were grown in hydroponic conditions to investigate the effectiveness of supplementary calcium chloride (CaCl2) applied into nutrient solution on plants grown at high (400 mM) sodium chloride (NaCl) concentration. Treatments were: 1) nutrient solution alone [control (C)]; 2) nutrient solution plus 400 mM sodium chloride (NaCl); and 3) nutrient solution and 400 mM NaCl plus supplementary 40 mM CaCl2 supplied in nutrient solution (NaCl + CaCl2). The experiment was set up as a completely randomized design, consisting of two species (A. halimus and A. canescens), three treatments (control, NaCl, and NaCl + CaCl2), and five replicates. Dry weight and chlorophyll content of plants grown at high NaCl were lower than those at normal nutrient solution. Supplementary CaCl2 ameliorated the negative effects of salinity on plant growth in both species. Root hydraulic conductivity (L 0) decreased with elevated NaCl and increased with supplementary CaCl2 compared to the stressed plants. Membrane permeability increased with high NaCl application and these increases in root membrane permeability decreased with supplementary CaCl2 compared to the NaCl treatment. Sodium (Na) concentration in plant tissues increased in both species in high NaCl level. Application of supplementary CaCl2 lowered Na concentration. Concentrations of calcium (Ca) and potassium (K) were at deficient ranges in the plants grown at high NaCl levels and these deficiencies were corrected by supplementary CaCl2.

ACKNOWLEDGMENTS

The Secretariat of State for Scientific Research and Technology from Algeria is gratefully acknowledged for supporting this research. Thanks are also due to anonymous reviewer for additional valuable comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.