827
Views
49
CrossRef citations to date
0
Altmetric
Original Articles

REDUCING NITRATE CONTENT IN LETTUCE BY PRE-HARVEST CONTINUOUS LIGHT DELIVERED BY RED AND BLUE LIGHT-EMITTING DIODES

, &
Pages 481-490 | Received 21 Aug 2010, Accepted 21 Mar 2011, Published online: 15 Jan 2013
 

Abstract

Effect of pre-harvest continuous light with different red/blue ratio on photon flux density (R/B ratio) on reducing nitrate accumulation was studied by growing lettuce (Lactuca sativa L.) under continuous illumination delivered by light-emitting diodes (LEDs). Results show that nitrate concentration decreased by 1648.0–2061.1 mg kg−1 in leaf blade and 962.9–2090.3 mg kg−1 in petiole, accompanied by a dramatic increase in soluble sugar content. Compared with monochromatic red light treatment, the decrease in nitrate concentration and increase in soluble sugar content in lettuce under mixed red and blue light were more pronounced. The lowest nitrate concentration was observed in the treatment with R/B ratio of 4. It's concluded that pre-harvest exposure to 48 h continuous LED light could effectively reduce nitrate accumulation in lettuce and this process is strongly affected by R/B ratio of light. This study may provide new perspective for pre-harvest quality management of vegetable, especially in commercial leaf vegetable production under artificial lighting.

ACKNOWLEDGMENTS

We want to thank the financial support of the Basic Scientific Research Fund of National Nonprofit Institutes (BSRF201004), Institute of Environment and Sustainable Development in Agriculture, CAAS.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.