212
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Wheat and Rye Differ in Drymatter Partitioning, Shoot-Root Ratio and Water Use Efficiency Under Organic and Inorganic Soils

Pages 1885-1897 | Received 11 Dec 2011, Accepted 03 Jun 2013, Published online: 27 Jun 2014
 

Abstract

Shoot-root ratio (S:R), dry matter partitioning (DMP), and water use efficiency (WUE) response of wheat (Triticum aestivum L.) vs. rye (Secale cereale L.) was investigated under organic [organic compost (OC), Miracle Grow (MG), sunshine peat moss (SPM), and Garden Basic peat humus (GBPM)], and inorganic soils [canyon soil (CS) and amarillo soil (AS)] in pot experiment at Dryland Agriculture Institute, West Texas A&M University, College Station, Texas, USA, during winter 2009–2010. The experiment was performed in completely randomized design (CRD) with three repeats. The objective of this experiment was whether S:R, DMP, and WUE of wheat versus rye differ under organic and inorganic soils. The results revealed that both crops responded differently in terms of S:R, DMP, and WUE under different organic and inorganic soils. Wheat had higher WUE than rye at different growth stages. Among the soil types, the three organic soils (MG, SPM, and GBPS) had higher WUE than the two inorganic (CS and AS) soils. The higher WUE of both crops when grown in organic soils such as MG, SPM, and GBPS was due to the higher dry matter partitioning to shoots and roots. The total dry weight plant−1 showed positive relationship with WUE.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.