340
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Changes in Biological Properties in Soil Amended with Rock Phosphate and Waste Mica Enriched Compost using Biological Amendments and Chemical Fertilizers Under Wheat-Soybean Rotation

&
Pages 2050-2073 | Received 29 Dec 2011, Accepted 16 Aug 2012, Published online: 08 Aug 2014
 

Abstract

The main aim of this research work is to prepare an enriched compost using rice straw mixed with rock phosphate, waste mica and Aspergillus awamori and to study their effect on changes in microbial properties in soils with and without chemical fertilizers under wheat-soybean rotation. Data revealed that significant increase in microbial biomass carbon (MBC), dehydrogenase activity, phosphatase activities, and microbial biomass phosphorus (MBP) in soil were maintained in enriched compost than ordinary compost after both the crops. Significant increase in MBC, dehydrogenase activity, phosphatase activities, and MBP were found in surface soil. The maximum microbial activities were observed in the treatment receiving 50% recommended dose of fertilizer (RDF) + enriched compost at 5 t ha−1 indicating that integrated use of chemical fertilizers and enriched compost significantly improved the biological properties of soil under wheat–soybean rotation thereby enhanced soil fertility and crop production.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.