98
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Colonization with endo-mycorrhiza affects the resistance of safflower in response to salinity condition

, , &
Pages 1856-1867 | Received 14 Oct 2015, Accepted 20 Dec 2015, Published online: 29 Aug 2017
 

ABSTRACT

Two Safflower (Carthamus tinctoriusL.) cultivars' seeds were used to study the influence of inoculation with mycorrhiza arbuscular fungi under salinity stress condition. Factorial experiment based on completely randomized design (three-way analysis of variance (ANOVA)) with 3 replications was used. Salinity treatment with 3 levels (0.5, 6, and 12 dS/m) and mycorrhizal arbuscular inoculation with two species (three levels consist of non-inoculation, and inoculation with Glomus intraradices and G. moseae) were applied on two cultivars of safflower (Goldasht and Padide) in this experiment. Some important biochemical, mineral, and growth traits were measured in this study. Salinity had a significant negative effect on all growth and morphological parameters including shoot and root dry weight, stem and root height. On the other hand, colonized plants showed better growth parameters under saline conditions compared with the control. The colonization of both mycorrhizal species decreased with salinity. Sugar and pigment content decreased with salinity, but their levels in colonized plants under saline conditions were higher than that in non-colonized plants. Mineral elements including phosphorus (P), nitrogen (N), and magnesium (Mg) were higher in colonized plants, while salinity decreased the absorption of these elements in both inoculated and non-inoculated plants. Higher activity of the enzymatic antioxidant means higher removal of these compounds and higher resistance to stress condition. Overall, it is clear that salinity had a negative effect on both cultivars of safflower, but these negative effects were lower in inoculated plants than in the non-inoculated ones; so, the use of mycorrhizal inoculation is a proper way to control the effect of salinity and maintain plant production.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.