343
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Improvement of drought tolerance in Tobacco (Nicotiana rustica L.) plants by Silicon

, &
Pages 1661-1676 | Received 18 Jul 2014, Accepted 30 Aug 2016, Published online: 01 Aug 2017
 

ABSTRACT

Ameliorative effect of silicon (Si) (2 mM as sodium silicate (Na2SiO3)) was studied in tobacco (Nicotiana rustica L.) plants grown under control at 100% field capacity (FC), mild drought (60% FC), and severe drought (30% FC) conditions. Si-treated plants had higher biomass of particularly above-ground parts both under drought and control conditions. Plants with Si supply had significantly higher net assimilation rates but lower transpiration rates. Silicon supply enhanced osmotic potentials only in the leaves, but not in the roots. A considerable rise in the concentrations of soluble sugars was observed particularly in the leaves under both drought and Si treatments. Soluble proteins, free α-amino acids, and proline concentrations increased in Si-treated plants under all watering treatments. Si enhanced the activity of antioxidative enzymes and decreased hydrogen peroxide (H2O2) concentrations. Results indicate that Si supplementation alleviates drought stress via improvement of water relation parameters, enhancement of photosynthesis, and elevation of antioxidant defenses.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.