282
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Bioremediation of heavy metals from municipal sewage by cyanobacteria and its effects on growth and some metabolites of Beta vulgaris

&
Pages 2550-2561 | Received 10 Oct 2015, Accepted 16 Mar 2017, Published online: 23 Oct 2017
 

ABSTRACT

The present research was done to study the ability of cyanobacterial species for removing heavy metals from sewage. As well, to estimate the growth and some metabolites of Beta vulgaris irrigated with sewage treated by cyanobacterial species. The best removal results were obtained by Anabaena oryzae compared to the other studied cyanobacteria. Whereas A. oryzae showed high removal efficiency for cadmium (Cd2+) followed by lead (Pb2+), zinc (Zn2+), iron (Fe2+), copper (Cu2+) and manganese (Mn2+) (88.5, 83.1, 68.8, 62.0, 55.2 and 42.4%, respectively). Irrigation of plants by untreated or treated sewage generally caused stimulation in the total proteins, proline, carbohydrates and ascorbic acid. B. vulgaris grown in soil irrigated with untreated sewage showed maximum catalase, peroxidase activity, hydrogen peroxide (H2O2) and lipid peroxidation compared to the other treatments. The heavy metals availability was relatively low in the plant irrigated with treated sewage by cyanobacterial species, so the antioxidants requirement was low and hence the induction of antioxidants was lower compared to the plant irrigated with untreated sewage.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.