557
Views
23
CrossRef citations to date
0
Altmetric
Articles

Response of a wild-type and modern cowpea cultivars to arbuscular mycorrhizal inoculation in sterilized and non-sterilized soil

, ORCID Icon, &
Pages 90-101 | Received 16 May 2016, Accepted 28 Nov 2016, Published online: 03 Nov 2017
 

ABSTRACT

Cowpea is an important crop that serves as a legume and vegetable source to many smallholder farmers in sub-Saharan Africa. Soil fertility is a significant limitation to its production thus; inoculation with beneficial soil biota such as arbuscular mycorrhizal fungi (AMF) could improve its performance. However, plant–AMF interaction could vary based on crop cultivar hence affecting overall crop production. The present study aimed at determining the effect of AMF inoculation and soil sterilization on root colonization and growth of a wild-type and three modern cowpea cultivars grown by smallholder farmers in Kenya. Potted cowpea plants were inoculated with a commercial AMF inoculum comprising of Rhizophagus irregularis, Funneliformis mosseae, Glomus aggregatum and Glomus etunicatum and maintained in a greenhouse for 40 days. After harvesting, mycorrhizal colonization, nodule number and dry weight, root and shoot dry weights, nitrogen (N,) phosphorus (P) and potassium (K) content were determined. Interestingly, the modern cultivars showed significantly (p < 0.001) higher root colonization, nodulation, shoot P and N compared to the wild-type cultivar. Moreover, a strong positive correlation between AMF root colonization and shoot P (r2 = 0.73, 0.90, p < 0.001), AMF root colonization and shoot N (r2 = 0.78; 0.89, p < 0.001) was observed in both sterilized and non-sterilized soil, respectively. Soil sterilization affected root colonization and growth parameters with plants grown in non-sterilized soil performing better than those grown in sterilized soil. This study provides major evidence that modern cowpea cultivars are still responsive to mycorrhizal inoculation suggesting that modern breeding programs are not deleterious AMF symbiosis.

Acknowledgment

This work was supported by the International Centre for Insect Physiology and Ecology (ICIPE), Nairobi, Kenya and the Department of Microbiology, Kenyatta University. The authors wish to thank Symyco Inc. and Mycorrhizal Applications, Inc (Grants Pass, Oregon, U.S.) for providing with AMF inoculum.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.