274
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Agronomic management based on multi-split topdressing increases grain yield and nitrogen use efficiency in rainfed maize in Vertisols of India

ORCID Icon, , , , , , , & show all
Pages 828-844 | Received 23 Nov 2020, Accepted 29 Dec 2020, Published online: 03 Nov 2021
 

Abstract

Conventional fertilizer nitrogen (N) recommendations for rainfed maize resulted in low N use efficiency (NUE) due to several reasons. This warrants application of fertilizer synchronous with plant requirements that could aid in improved productivity and NUE. In this backdrop, to optimize N rates for maize, a field experiment was conducted during 2014 to 2016 in Vertisols. Twelve treatments in combinations viz., N omission, skipping basal dose, multi-split topdressing at varying time either as broadcast or band placement, soil test crop response (STCR) based N with target yield 6.0 t ha−1 and biochar application were investigated in a randomized block design (RBD). Late application of N rates (120 kg ha−1) in 2 equal splits at knee high (V8) and tasseling (VT) stages with skipping of basal N, significantly increased grain yield, agronomy efficiency (AE), partial factor productivity (PFP), physiological efficiency (PE) and recovery efficiency (RE) to the tune of 16.3%, 45.1%, 15.3%, 14.0% and 37.9% than conventional recommendations, respectively. The higher yields and NUE with late application of N were ascribed due to positive significant linear relationship between yield and N availability. Factor analysis too revealed the one to one positive function of biomass with N uptake at V8 and VT. Principal component (PC) regression exhibited that PC1 acted as a major predictor for yield and dominated by leaf area index (LAI) and N uptake. Thus, we conclude that the multi-split N, to achieve higher yield and greater NUE, is strongly linked with late splits of N at V8 and VT.

Acknowledgements

We are grateful to ICAR-Indian Institute of Soil Science, Bhopal, for providing financial support. We are gratifying to Mr. Deepak Kaul (Chief Technical Officer) and Mr. Jai Singh (Senior Technical Officer) for their assistance in field and laboratory work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.