13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Salt stress alleviation in Calendula officinalis L. by potassium nanoparticles application and Streptomyces bacteria inoculation

, &
Received 14 Feb 2024, Accepted 21 May 2024, Published online: 26 Jun 2024
 

Abstract

The current study was conducted to mitigate salt stress on Calendula officinalis L. plants using Streptomyces (Sm) bacteria alone or in combination with potassium nanoparticles (K NPs). Based on the results, morphometric characters, leaf SPAD and relative water content in plants treated with Sm bacteria and K NPs increased compared to the nontreated control under salinity stress. However, leaf ionic leakage, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content decreased considerably in these treated plants. Also, under salt stress, the activity of antioxidant enzymes was higher in Sm bacteria + K NPs -treated plants than in controls. In all plants, endogenous indole acetic acid (IAA) content increased compared to plants grown in non-saline conditions. Inoculated plants reflected a relative increase in IAA by about 28% over the uninoculated plants. The highest amount of abscisic acid (ABA) and putrescine (Put) was related to those plants treated with Sm bacteria + K NPs, which the amounts were 43% and 47% higher than in control plants, respectively. Application of Sm bacteria + K NPs had a helpful outcome on both macronutrients (N-NO-3, P, K and Mg) and micronutrients (Fe, Zn, and Mn) of vines leaves. In general, the inoculation of Sm bacteria + K NPs application by improving the uptake of nutrients, regulating phytohormones and increasing the antioxidant enzymes activity resulted in salinity tolerance improvement in calendula plants.

Disclosure statement

The authors declare that there are no conflicts of interest.

Additional information

Funding

Funding was provided by Malayer University of Iran (R. Karimi; Grant no. 84.9–232). The authors gratefully acknowledge the Malayer University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 495.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.