12
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Perennial winged bean yield and nitrogen fixation improvement with soil fertility treatments of a typic eutrustox

, &
Pages 641-656 | Published online: 21 Nov 2008
 

Abstract

The perennial legume, Winged Bean (Psophocarpus tetragonolobus (L) DC), has potential as a high protein food crop for the humid, tropical regions of the world. Edible seed pods, oil seed grain, leaves, flowers, and unique high protein tubers provide abundant nutritious components desirable for improved human diets. However, soil characteristics and fertility levels influence plant growth, yields and nitrogen fixation capability of this legume. Objectives of this study were to determine soil‐plant nutrient influences on vigorous regrowth, pod and tuber yields, nitrogenase (C2H2 red.) activity levels, and nodule cytosol components of the perennial Siempre cultivar grown on a Typic Eutrustox during three years, 1978–1980.

Available soil phosphorus was a first limiting plant nutrient during all three years of plant age. Effects of combined 100 mg P with 200 mg K/kg soil were highly significant for every parameter and plant age. Pod and seed yields more than doubled with PK addition compared to the check. Tuber growth, nodule mass and nitrogenase activity levels more than trebled with PK treatments as compared to the check. Both elemental P and K were significantly increased within the nodule cytosol of fertilized plants. Cytosol Na was significantly decreased with soil K additions. The best fit multiple regression was: nitrogenase = 1.99 nodule wt. + 6.34 tuber wt. + 0.39 tuber % N + 5.08 cytosol P + 1.55 cytosol K ‐ 0.45 cytosol Na, R2 = 95.5, C.V. = 11.2%. The dominant nodule cytosol enzymes, aspartate aminotransferase (AST) and glutamine synthetase (GS), significantly increased with soil K additions regardless of P treatments. Glutamate dehydrogenase (GDH) and glutamate synthase (GOGAT) also contributed significantly with multiple regression for nitrogenase = 1.07 GS + 2.1 AST + 1.74 GOGAT ‐ 1.76 GDH + 12.89 Ureide, R2 = .89, C.V. = 17.3%. Highly significant increases in nodule cytosol ureide composition with K soil additions has interest because of the role as a nitrogenous nonprotein component for many legumes. Increases in growth, nodulation and nitrogenase activity levels resulted with increased K levels of 0, 100, 200 and 300 mg K/kg soil when soil P and Ca were not limiting.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.