18
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Iron deficiency stress response of various c‐3 and c‐4 grain crop genotypes: Strategy II mechanism evaluated

&
Pages 341-361 | Published online: 21 Nov 2008
 

Abstract

The relative amount of phytosiderophore produced by various Strategy II plants has been categorized as follows: barley (Hordeum vulgare L.) > wheat (Triticum aestivum L.) > oat (Avena byzantina C. Koch.) > rye (Secale cereale L.) >> corn (Zea mays L.) >> sorghum (Sorghum bicolor (L.) Moench) > rice (Oryza sativa L.). With the exception of rice, these plants developed under oxidized soil conditions, and the C‐3 species produce more phytosiderophore than C‐4 species under Fe‐deficiency stress. Iron‐efficient Coker 227 oat produced phytosiderophore in response to Fe‐deficiency stress, while Fe‐inefficient TAM 0–312 oat did not. Although Fe‐efficient WF9 corn and Fe‐inefficient ys1 corn differed in their ability to obtain Fe, neither produced sufficient quantities of phytosiderophore to explain these differences. The objectives of this research were to determine: (a) if phytosiderophore production of Fe‐deficiency stressed C‐4 species millet (Panicum miliaceum L.) and corn is low or absent compared to identically stressed C‐3 species oat and barley, and (b) if native, inbred and hybrid corn cultivars differ in ability to produce and utilize phytosiderophores.

Although release of phytosiderophore for Fe‐stressed corn and millet was generally lower than oat, quantity of release was not always related to obtaining Fe and maintaining green plants. Barley maintained high leaf Fe and low chlorosis with a minor release of phytosiderophore. Oat with increased release acted similarly to barley, whereas a relatively high release of phytosiderophore from White maize did not effect Fe uptake or greening. Likewise, small amounts of phytosiderophore were produced by all corn types, but corn was generally unable to obtain adequate Fe from the growth medium. Two of the native corns, Coneso and Tepecintle, maintained relatively low chlorosis, but they differed in phytosiderophore release. Thus, it appears that the C‐4 plants studied herein generally release a lower amount of phytosiderophore than do C‐3 species, but overcoming Fe‐deficiency chlorosis is not guaranteed by such release. The Strategy II mechanism of mere release of phytosiderophore and consequential Fe acquisition appears simplistic. There is a need for understanding what other factors are involved.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.