28
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Nutrient status of rhizosphere and phosphorus response of radish

, &
Pages 385-399 | Published online: 21 Nov 2008
 

Abstract

Radish (Raphanus sativus L.) exhibits a high efficiency in the utilization of sparingly‐soluble phosphates. A greenhouse experiment was designed to investigate the growth response of radish to different phosphorus (P) sources and the nutrient status of the rhizosphere associated with radish growth and nutrient absorption. Radish plants were grown in pots with the roots confined in rhizobags, in such a manner that the concentration of roots was very high within the rhizobag. The rhizosphere soils and non‐rhizosphere soils were analyzed separately for active silicon (Si), aluminum (Al), iron (Fe), and manganese (Mn) using Tamm's solution and for “available”; P using the Bray P1 extraction reagent. The radish growth response was mostly attributable to phosphate amount and availability, and the lime level used in the experiment. Concentrations of active Fe, Si, Al, and Mn were reduced in the rhizosphere, especially when lime and rock phosphate (Ps) were added. Available soil P was accumulated in the rhizosphere under lime and Ps addition, whereas its concentration was reduced with the zero lime treatment. Phosphorus utilization, characterized by P accumulation in shoots, was in accordance with the concentration pattern for “available”; P in the rhizosphere, but not with the growth response of radish itself. The calcium (Ca) concentration of the shoot followed the same trend as the radish growth. There was an antagonism between potassium (K) and Ca absorption as well as between Ca and magnesium (Mg) absorption. With the addition of P, shoot Mn concentration increased, while shoot Fe and Al concentrations increased with no lime addition but decreased with lime addition. The high P efficiency of radish is discussed from the view of rhizosphere chemistry. The high Mn efficiency of radish may be influenced by the same rhizosphere processes that are involved in its high P efficiency. It was concluded that rhizosphere processes and the status of nutrients determined the nutrient efficiency of radish and thus influenced its growth response and nutrient uptake.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.