42
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

Zinc‐efficient wild grasses enhance release of phytosiderophores under zinc deficiency

, , , &
Pages 551-563 | Published online: 21 Nov 2008
 

Abstract

The effect of the zinc (Zn) nutritional status on the rate of phyto‐siderophore release was studied in three wild grass species (Hordeum murinum, Agropyron orientale, and Secale cereale) grown in nutrient solution under co‐trolled environmental conditions. These wild grasses are highly “Zn‐efficient”; and grow well on severely Zn‐deficient calcareous soils in Turkey (DTPA‐extractable Zn was 0.12 mg/kg soil and CaCO3 was 37%). In all wild grasses studied, Zn deficiency reduced shoot growth but had no effect on root growth. Low amounts of phytosiderophores were released from roots of all wild grasses adequately supplied with Zn. In plants grown without Zn, release of phytosiderophores progressively increased with the onset of visual Zn deficiency symptoms, such as inhibition of shoot elongation and appearance of chlorotic and necrotic patches on leaves. Compared to Zn‐sufficient plants, phytosiderophore release increased 18–20‐fold in deficient plants. HPLC analysis of root exudates showed that the dominating phytosiderophore in Zn‐deficient Agropyron and Hordeum was 3‐epi‐hydro‐xymugineic acid (epi‐HMA) and was 3‐hydroxy‐mugineic acid (HMA) in Secale. Besides HMA, epi‐HMA and mugineic acid (MA) were also detected in exudates of Zn‐deficient Secale. The results indicate the importance of phytosiderophores in adaptation of wild grasses to Zn‐deficient calcareous soils. Phytosiderophores might enhance mobilization of Zn from sparingly soluble Zn pools and from adsorption sites, both in the rhizosphere and within the plants.

Notes

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.