70
Views
100
CrossRef citations to date
0
Altmetric
Original Articles

Cadmium effects on influx and transport of mineral nutrients in plant species

, , &
Pages 643-656 | Published online: 21 Nov 2008
 

Abstract

Solution culture experiments were conducted under controlled environmental conditions to determine the effects of cadmium(II) [Cd(II)] activity (0, 8, 14, 28, 42, and 54 μM) on influx (IN) into roots and transport (TR) from roots to shoots of zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), calcium (Ca), magnesium (Mg), phosphorus (P), and sulfur (S) in ryegrass (Lolium perenne L.), maize (Zea mays L.), white clover (Trifolium repens L.), and cabbage (Brassica oleracea var. capitata L.). Shoot and root dry matter (DM) decreased with increased external Cd, and plant species differed extensively. Ryegrass and cabbage were relatively tolerant to Cd toxicity compared to white clover and maize. Influx and TR of Cu, Zn, Fe, Mn, Ca, and Mg were lower with increasing external Cd compared to controls, and species also differed. Influx and TR of P were enhanced in each species with up to 14 μM Cd, decreased in white clover and cabbage at higher Cd levels, while in maize and ryegrass continued to increase as Cd increased. Influx and TR of S were high in white clover at 8 μM Cd and decreased as Cd increased. Influx of S was high in ryegrass, but TR of S remained relatively constant as Cd increased. Influx and TR of S did not significantly change in maize, but decreased in cabbage as Cd increased. With Cd up to 14 μM, decreases in both IN and TR of Zn, Fe, Mn, Ca, and Mg were greater in white clover than in cabbage. Sensitivity of the dicotyledonous plant species to Cd toxicity might have been associated with Cd effects on IN and TR of Fe, Mn, Ca, and Mg. However, differences in plant sensitivities to Cd toxicity between ryegrass and maize were not reflected in Cd effects on IN and TR of mineral nutrients.

Notes

Department of Land Use and Applied Chemistry, Zhejiang Agricultural University, 310029 Hangzhou, P.R. China.

Department of Crop & Soil Environmental Sciences, Virginia Polytechnic Institute and State University (VP1 & SU), Blacksburg, VA 24061–0404.

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.