321
Views
52
CrossRef citations to date
0
Altmetric
Original Articles

Interactive effects of salinity and macronutrient level on wheat. II. Composition

&
Pages 1169-1182 | Published online: 21 Nov 2008
 

Abstract

Results of several studies show interactive effects of salinity and macronutrients on the growth of wheat plants. These effects may be associated with the nutrient status in plant tissues. The objective of this study was to investigate interactive effects of salinity and macronutrients on mineral element concentrations in leaves, stems, and grain of spring wheat (Triticum aestivum L. cv. Lona), grown in hydroponics, and the relation of these effects to yield components. Eight salinity levels were established from 0 to 150 mM NaCl, and 1, 0.2, and 0.04 strength Hoagland macronutrient solution (x HS) were used as the macronutrient levels. Sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chlorine (Cl), and phosphorus (P) in leaves, stems, and grain, NO3 in leaves and stems, and total nitrogen (N) in grain were determined. Supplemental Ca, Mg, K, and NO3 added to 0.2 x HS increased mineral concentrations in leaves and stems, but did not improve growth or yield in salinized wheat plants except moderately at 100–150 mM NaCl. In contrast, growth or yield was improved significantly when the concentration of macronutrients was increased from 0.04 to 0.2 × HS. In contrast to leaves and stems, mineral concentrations in grain increased (Na, Cl) or decreased (Ca, Mg, K) only slightly or were not affected (K) by salinity except at high salinity and low macronutrient level. Nitrogen and P concentrations in grain were not affected by salinity. Sodium and Cl concentrations in leaves and stems increased significantly, whereas K and NO3 decreased significantly, with an increase in salinity regardless of the macronutrient level. The latter was also observed for Ca and Mg in leaves. Extreme Na/Ca ratios in plant tissues negatively affected grain yield production at high salinity with medium or high macronutrient levels and at low macronutrient level together with medium salinity. Even though strong and significant correlations between mineral concentration at grain maturity in leaves, stems, and grain and various yield parameters were observed, our results are inconclusive as to whether toxicity, nutrient imbalance, nutrient deficiency, or all of these factors had a strong influence on grain yield.

Notes

Corresponding author.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.