174
Views
1
CrossRef citations to date
0
Altmetric
Clinical Research

Human ovarian granulosa cells use clathrin-mediated endocytosis for LDL uptake: immunocytochemical and electron microscopic study

, , & ORCID Icon
Pages 241-252 | Received 05 Feb 2023, Accepted 04 Apr 2023, Published online: 10 Apr 2023
 

ABSTRACT

The steroidogenic activity of the granulosa cells is important for the reproductive cycle, and lipoproteins are involved in this process. The clathrin-mediated endocytosis pathway for LDL transport is considered to be the main one in eukaryotic cells. However, there are no studies that elucidate LDL internalization in human granulosa cells clarifying whether the clathrin-mediated endocytic pathway is functional in this process. The aim of this study is to investigate the role of clathrin and v-SNARE proteins in the formation of vesicles in human granulosa cells. In this study, the COV434 human granulosa cells were cultured and divided into four groups where in some of the groups Dil-conjugated LDL and Icarugamycin (ICA) a clathrin-mediated endocytosis inhibitor were added. From the collected mediums pregnenolone and progesterone levels were measured using ELISA. Oil red O staining was performed to show the intracellular lipids in the cells. Clathrin-coated vesicles believed to be responsible for carrying LDL, and v-SNARE proteins that direct the vesicles to their target molecules were also labeled and investigated by histological and ultrastructural methods. Our results show that human granulosa cells as well use the LDL cholesterol for steroid biosynthesis and they may prefer the clathrin-mediated endocytotic pathway to internalize it.

Acknowledgments

We thank Prof Dr Özgür Öktem for his technical support to this study.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Statements and Declarations

All authors declare that they have no conflicts of interest.

This study was supported by Istanbul University-Cerrahpasa Scientific Research Projects Unit. Project No: 35605

Additional information

Funding

The work was supported by the Istanbul University-Cerrahpasa Scientific Research Projects Unit. [35605].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,022.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.