Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 32, 2010 - Issue 4
234
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Comparison between Ozonation and Photo-Fenton Processes for Pesticide Methomyl Removal in Advanced Greenhouses

, , &
Pages 259-264 | Received 27 Apr 2009, Accepted 18 Mar 2010, Published online: 30 Jul 2010
 

Abstract

So-called “Advanced Greenhouses” are a new approach to the concept of protected agriculture. Among other technological and structural improvements, these facilities give the possibility of recycling the irrigation surplus water, rich in lixiviates, salts, pesticides and its metabolites. After many cycles, the current is so concentrated on those substances that it becomes necessary for the presence of a membrane separation stage which brine, highly concentrated on those named pollutants, has to be treated before being sent to the public sewage system. Advanced Oxidation Processes, among other chemical treatments, can be considered an alternative to process this current effluent. In this work, concentrated aqueous solutions of methomyl as model pesticide (200 mg·L−1) have been subjected to two of those processes: ozonation and photo-Fenton reaction. Analysis of the elimination of the pesticide itself and the grade of mineralization achieved have shown how, while the ozonation is the most effective process decomposing the pesticide (eliminating the total concentration in 60 minutes), the photo-Fenton reaction mineralizes successfully the 40% of the total organic load (the ozonation only can cope with 20%) but only decompose a 40% of the pesticide. Evolution of biodegradability and toxicity of the effluent along both processes was also analyzed. Intermediates generated both by ozonation and photo-Fenton did not increase the biodegradability of the treated effluents. Nevertheless, while acute toxicity just after 15 minutes of treatment with ozone is notably higher than for raw solution, and it is maintained till the end of the experiment (120 min), though, toxicity along photo-Fenton reaction has two growing and decreasing regions, always shows lower values than the provoked during ozonation. None of the two assayed processes has been proved to increase biocompatibility of highly concentrated methomyl solutions.

ACKNOWLEDGMENTS

The authors are grateful to ACCIONA Agua and CDTI (Ministry of Industry, Spanish Government) for the financial support through CENIT-MEDIODIA project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 403.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.