1,017
Views
34
CrossRef citations to date
0
Altmetric
Review

Ozone: An Advanced Oxidation Technology to Enhance Sustainable Food Consumption through Mycotoxin Degradation

, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 17-37 | Received 20 Apr 2021, Accepted 23 Jun 2021, Published online: 15 Jul 2021
 

ABSTRACT

Mycotoxins are health-threatening fungal metabolites that have been found in several foods around the world. Although agricultural, transportation, and storage management strategies have been employed to reduce the production of mycotoxins, they are not effective in eliminating mycotoxins. In this context, the application of ozone has emerged for the degradation of mycotoxins. Ozone has a strong oxidation rate and generates more free radicals, which can counter the functional groups of the mycotoxin by changing their molecular structures and forming products having lower molecular weight reduced number of double bonds, and reduced toxicity. Research indicates that ozone could be able to destroy mycotoxins without leaving any residues in the commodities. The ozone processing parameters, surface and nutritional properties of food, and fungal species are the primary determinants affecting the processing efficacy. Ozone can contribute to sustainable food consumption through mycotoxin degradation to achieve sustainable development goals (SDGs).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 403.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.