Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 45, 2023 - Issue 4
240
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Efficient Dye Removal Using Fe3O4.MnO2.MoS2 Nanocomposite in Optimized Photocatalytic Ozonation Process

& ORCID Icon
Pages 346-360 | Received 02 Mar 2022, Accepted 27 Jul 2022, Published online: 08 Aug 2022
 

ABSTRACT

In this study, Fe3O4.MnO2.MoS2 nanocatalyst has been fabricated for the first time and applied in the photocatalytic ozonation (PCO) process. The efficiency of this ternary heterostructure nanocomposite was evaluated in the removal of Acid Blue 113 (AB113) dye with 100 mg.L−1 concentration utilizing response surface methodology (RSM). The optimal condition of the process was attained at pH = 3, using 2 mg of the nanocatalyst and 300 mg.L−1 ozone dosage applied over 20 min. High efficiency of AB113 removal (99%) was observed at the optimal condition. In addition, the performance of the synthesized catalyst in the PCO process was investigated in the treatment of a real textile effluent sample. The PCO has been found to be more efficient than the individual photocatalysis and catalytic ozonation methods due to the synergistic effect between the two oxidation systems. The results proved that Fe3O4.MnO2.MoS2 can be used as a highly efficient catalyst in the PCO process.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 403.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.