279
Views
20
CrossRef citations to date
0
Altmetric
Original Articles

Study on the Photodegradation of Salicylic Acid in Different Vehicles in the Absence and in the Presence of TiO2

, , , , &
Pages 805-818 | Published online: 06 Jun 2007
 

In this work, the direct photolysis of salicylic acid, generally used as keratolytic agent in many dermatological products and as preservative in cosmetics, was investigated. The photodegradation of the acid under UVB irradiation was evaluated in different vehicles, such as water solutions at different pH, propylene glycol/water, and ethanol/water mixtures, sodium dodecyl sulphate solutions, and O/W emulsions prepared with Montanov 68 and Amphysol K as emulsifiers. The increase of pH enhanced the photodegradation of salicylic acid while the different vehicles protected the acid from the action of UVB radiations. However, the best protection was observed dissolving the acid in the lipid core of O/W emulsions, which probably removes the active from the polar environment that can promote the photolysis. The photocatalytic activity of TiO2 on the degradation of salicylic acid also was evaluated. TiO2 frequently is used as sunscreen in many cosmetic preparations. Salicylic acid and the pigment can be contained in the same solar formulation; hence, it can be interesting to study their interaction under UVB. TiO2 enhanced the photodegradation of salicylic acid in all the media previously reported and its photocatalytic activity was influenced by the pH and by the components of the vehicles.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.