126
Views
12
CrossRef citations to date
0
Altmetric
Regular Submitted Articles

Macroscopic Networks of Carbon Nanotubes in PMMA Matrix Induced by AC Electric Field

, , , , &
Pages 502-507 | Received 27 Feb 2007, Accepted 10 Mar 2007, Published online: 04 Apr 2008
 

It has been proven that electric fields can be used to improve the dispersion and alignment of carbon nanotubes (CNTs) in liquid media. In this article, an AC electric field is applied to blending of suspension of CNTs in methlmethacrylate (MMA) monomer during the polymerization of the MMA monomer initiated by 2 2‐azoisobytyronitrile (AIBN). Polymethlmethacrylate (PMMA) composites with macroscopic CNTs networks are prepared. It is found that morphologies of the CNTs networks are strongly dependent on the electric field parameters and polymerization conditions, such as the voltage, frequency, exerting time of the electric field, shapes of the electrodes for introducing the electric field, and the polymerization temperature. Increased voltage and frequency are found to be beneficial for the improvement of the CNTs dispersion and alignment, while fine CNTs networks are formed with optimized polymerization temperature and exerting time of the electric field.

This project is sponsored by the Foundation of National Natural Science, P. R. China (Grant No. 10332020) and the Innovation Fund for Outstanding Scholar of Henan Province, P. R. China (Grant No. 0521001000).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.