223
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Photostability of Ferulic Acid and Its Antioxidant Activity Against Linoleic Acid Peroxidation

, , , , &
Pages 629-640 | Received 08 Mar 2007, Accepted 28 Mar 2007, Published online: 21 Apr 2008
 

Ferulic acid (4‐hydroxy‐3‐methoxycinnamic acid), a phenyl‐propenoid derivative of cinnamic acid, can undergo photolysis upon UV irradiation. The photodegradation kinetics of ferulic acid were thus investigated in different systems. The micellar solutions did not protect the acid from photodegradation. On the contrary, they catalyzed its degradation at a variable extent depending on the surfactant structure. The photodegradation of ferulic acid in microemulsions was slower than in micelles and near to that in water. TiO2, habitually employed as a physical sunscreen, showed photocatalytic action toward ferulic acid degradation especially at higher initial concentration of ferulic acid. The action of ferulic acid on the peroxidation of linoleic acid in micelles and microemulsions also was evaluated. When the ferulic acid is absent the peroxidation is continuous while when it is present an induction time of 40 minutes or higher was observed. Accordingly, it is likely that linoleic acid acts as photosensitizer for ferulic acid, and that in turn ferulic acid acts as an antioxidant for linoleic acid, reducing the rate of peroxidation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.