102
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and Characterization of Nanocrystalline Fe-Doped TiO2 Film on Different Substrates and Its Application in Degrading Dyeing Water

&
Pages 110-114 | Received 10 Oct 2007, Accepted 20 Oct 2007, Published online: 16 Jun 2010
 

Abstract

TiO2 and Fe-doped TiO2 thin films were prepared on the substrates (glass plates and glass microballs) after dipped in colloid and calcined at 500°C. The films have been characterized by UV-absorption, x-ray diffraction and atomic force microscopy (AFM). The investigated Fe-doped TiO2 (A nominal 10 wt% Fe2O3 was impregnated) thin films were obtained by sol-gel method. The characterization results suggest that the calcined thin films primarily consist of TiO2 anatase. And the light absorption curve of the TiO2 films modified with Fe showed that red shift had happened by the dope of Fe. TiO2/beads as photocatalyst were used to degrade the simulated dyeing water which contains reactive deep-blue dye (K-R). Through the degradation experiment, we found that the dope of Fe promoted the photocatalytic activities. The results showed that the dyeing water can be decomposed more effectively by the photocatalytic oxidation of Fe/TiO2 film on glass micro-balls than glass plates.

Acknowledgments

This work is supported by the Natural Science Foundation of Qingdao University of Science and Technology (Grant No. 03Z02).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.