73
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of the Liquid-Gas Interface of Aqueous Systems Containing a Derivative from Castor Oil

, , &
Pages 980-985 | Received 13 Mar 2009, Accepted 03 Apr 2009, Published online: 21 Jun 2010
 

Abstract

An anionic surfactant, synthesized with ricinoleic acid from castor oil, was obtained and its behavior in terms of microemulsion formation (via pseudo-ternary diagram analysis) and liquid-gas surface tension (both for microemulsions and pure surfactant-water systems) was determined as a function of temperature and NaCl concentration in the aqueous phase. Microemulsions were formed by using butanol as co-surfactant and kerosene as the oil phase. Concerning the pseudoternary diagrams, the increase in NaCl concentration resulted in a decrease in the Winsor IV region, which was correlated to a possible occurrence of nonmicellar aggregates, induced by the high concentration of NaCl in the aqueous phase. Surface tension measurements also indicated that at the very high NaCl concentrations used there could be the formation of surfactant aggregates. The oil phase in microemulsionated systems decreased surface tension (but increased CMC): Possible interactions between isolated surfactant molecules and molecules from the oil phase were used to explain these results.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.