133
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Enhancement of Nanoclay Dispersion and Exfoliation in Epoxy Using Aminic Hardener Treated Clay

, , , &
Pages 1350-1357 | Received 26 Apr 2009, Accepted 07 Jun 2009, Published online: 17 Sep 2010
 

Abstract

Exfoliation and dispersion of nanoclays in epoxy matrices plays an important role in achieving better physical and mechanical properties of resultant nanocomposites. In this article, modification of clay with an aminic hardener for the increment of dispersion and exfoliation into the epoxy matrix has been investigated. In the solvent media, a slurry of hydrophilic Na-Montmorrilonite was mixed and treated with isophoronediamine (IPDA). The nanocomposites containing epoxy and IPDA-modified clay were produced through a recently developed “slurry compounding” method. Dispersion and exfoliation of the modified clay and the microstructure of the resultant nanocomposite were studied by optical microscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. The samples were then compared with the high shear mixed and sonicated nanocomposites containing commonly used quaternary ammonium modified clays. The comparison showed that dispersion and exfoliation of hardener-modified organoclays in epoxy have been improved due to the treatment of clay and the compounding method.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.