371
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of the Physical Stability of Zinc Oxide Suspensions Containing Sodium Poly-(acrylate) and Sodium Dodecylsulfate

, , , , &
Pages 1786-1798 | Received 06 Dec 2010, Accepted 03 Jan 2011, Published online: 19 Nov 2011
 

Abstract

The physical stability of zinc oxide (ZnO) aqueous suspensions has been monitored during two months by different methods of investigation. The suspensions were formulated with ZnO at a fixed concentration (5 wt%), sodium poly-(acrylate), as a viscosifier, and sodium dodecylsulfate (SDS), as a wetting agent. The rheological study shows that the suspensions exhibit a non-Newtonian, most often shear-thinning behavior and their apparent viscosity increases with polymer concentration. The rheograms of most of the ZnO suspensions do not vary during the experimental period. The viscoelastic properties of these suspensions, such as elastic or storage modulus (G′), viscous or loss modulus (G″) and phase angle (δ) were also examined. For% strains lower than 10%, all the formulations show strong elastic properties (G′ > G″, δ varies between 5 and 15°). Beyond 10% strain, the rheological behavior changes progressively from elastic to viscous (G″ > G′ for % strain >80%). Consistently, δ increases and reaches the 50–70° zone.

Multiple light scattering (back-scattered intensity), measured with the Turbiscan ags, was used to characterize suspension physical stability (early detection of particle or aggregate size variations and particle/aggregate migration phenomena). Suspensions containing 0.4 and 0.6 wt% polymer remain stable and macroscopically homogeneous, without being affected by the change of particle size observed with a laser particle sizer. Sedimentation tests, pH, and ζ potential measurements versus time, also confirmed these findings.

Notes

From the Proceedings from Formula VI in Stockholm 2010.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.