196
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Strain-Dependent Rheological Model and Pressure Wave Prediction for Shut in and Restart of Waxy Oil Pipelines

, , &
Pages 960-969 | Received 03 Jun 2013, Accepted 17 Jun 2013, Published online: 22 May 2014
 

Abstract

Waxy oil gelation and rheology is investigated and modeled using strain-dependent viscosity correlations. Rotational rheometry shows a sharp viscosity increase upon gel formation. High creeping flow viscosities are observed at small deformation conditions prior to yielding. A new strain-dependent rheological model, following analogous formulation to the Carreau–Yasuda shear rate-dependent model, captures viscosity reduction associated with yielding. In addition, shear viscosity and extensional viscosity are investigated using a capillary rheometry method. Distinct shear-thinning behavior is observed in the shear mode of deformation, while distinct tension-thinning behavior is observed in the extensional mode of deformation for the model fluid systems. High Trouton ratios are obtained for the gelled model fluid systems, confirming strongly non-Newtonian fluid rheology. Finally, axial pressure wave profiles are computed at real pipeline dimensions for idealized moderate yield stress fluids using a computationally efficient 1D pipeline simulator. The Rønningsen time-dependent gel degradation model is used to emulate the fluid rheology in the simulator. Axial stress localization phenomena are shown to depend on the overall magnitude of gel degradation as established by the reduction in yield value. A high degree of gel degradation serves to afford flow commencement in a timely manner.

ACKNOWLEDGMENTS

Carolyn Brisbane at Malvern Instruments Ltd. is acknowledged for the capillary rheometry experiments. Hans Oschmann is acknowledged for helpful discussions.

Notes

(a) 5 wt% macrocrystalline wax in dodecane;.

(b) crude oil UL-YS1.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.