121
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Velocity domain and volume fraction distribution of heavy microparticles in low reynolds number flow in microchannel

, , &
Pages 374-380 | Received 30 Jan 2016, Accepted 22 Mar 2016, Published online: 05 Apr 2016
 

ABSTRACT

In this paper, a two-dimensional Stokes flow having particle size distribution ranging from 10 to 50 µm in a rectangular channel is simulated numerically with focus on the hydrodynamic forces. The results show that due to the disparity between the density of the fluid and particles, velocity domain of particles deviates from the fluid velocity domain and this phenomenon occurs significantly for the larger particles. Also, with the increase of Reynolds number, the volume fraction of dispersed phase near the bottom wall of the channel increases either. Compared to similar studies, this investigation employs numerical simulation of microparticulate flow and interparticle hydrodynamic forces with emphasis on the dispersed phase volume fraction in order to present the microchannel flow properties.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.