181
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Application of response surface methodology for optimization of the stability of asphaltene particles in crude oil by TiO2/SiO2 nanofluids under static and dynamic conditions

, &
Pages 431-442 | Received 06 Apr 2017, Accepted 30 Apr 2017, Published online: 14 Jun 2017
 

ABSTRACT

In this work, the onset of asphaltene flocculation for an Iranian crude oil by titration of samples with heptane in the presence and absence of the TiO2/SiO2 nanofluids was obtained by Near-IR spectroscopy. Nanoparticles and nanocomposites were characterized by BET, FESEM, EDX, XRD, and XRF analysis. Modeling and optimization of inhibition of asphaltene flocculation process by TiO2/SiO2 nanofluids were conducted by response surface methodology (RSM). Under optimum conditions (nanocomposite composition = 0.04 wt% (80%TiO2:20%SiO2), salinity = 4.01 wt%, and pH = 3.42), the onset point increased. For nanofluids stability analysis, the optimum nanofluid was compared with the two other nanofluids (SiO2 and TiO2) by visual observation method. The results indicated that high stability and surface area of the 80%TiO2 nanocomposites increase asphaltene adsorption on the particles surface that subsequently increases the onset point. In addition, the optimum nanofluid performance on the carbonate rocks was evaluated by contact angle and core flooding experiments. The 80% TiO2 nanofluid changed the wettability of carbonate rocks from strongly oil-wet to strongly water-wet condition and also decreased the residual oil saturation and enhanced the oil recovery with an increase in the recovery factor of about 15%.

GRAPHICAL ABSTRACT

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 666.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.